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Abstract. We study the quantum oscillator on the half-line defined by the Hamiltonian 
H = -1 a2/ax2+&2 together with vanishing boundary conditions at 0. We derive and 
discuss a new operator equation of motion of the form x + x  = A  for this system. This 
equation is used to verify a conjecture (due to Klauderj that x satisfy x ( x  + x )  = 0. It is also 
used toobtain systematicresults on the set of n-point functions (n lx( t , )  x ( t 2 )  . . . x(t")la). It 
is suggested that our methods and results will act as a source of conjectures about the 
analogous pseudo-free field theories postulated by Klauder in his program for handling 
non-renormalisable field theories. 

1. Introduction 

Various forms of (harmonic and anharmonic) oscillator have long served as simple 
analogue systems for relativistic quantum field theories. 

In Klauder's general approach (Klauder 1979) to non-renormalisable quantum field 
theories, the pseudo-free oscillator serves as an important illustrative example. 

The pseudo-free oscillator Hamiltonian is just the usual harmonic oscillator Hamil- 
tonian 

restricted to the half-line (i.e. to L2(0, oo))-with vanishing boundary conditions 
imposed at 0. 

This system arises (Klauder 1973) when one perturbs the free harmonic oscillator by 
highly singular terms like hlxl-" (a >2).  In these cases, the system returns to the 
pseudo-free rather than to the free system as one switches off the coupling A.  

Klauder's program postulates an analogous behaviour for non-renormalisable 
interactions. As one switches off the coupling, they are expected to return not to the 
free theory but rather to some-as yet unknown-pseudo-free theory. 

Klauder (1979) makes a strong case for the existence of pseudo-free field theories, 
and several different (and mutually consistent) lines of attack are suggested for finding 
them. 

These pseudo-free theories are, of course, extreme limiting cases of highly interac- 
ting theories, and as such are far from being free themselves. 
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Nevertheless, precisely because they constitute some sort of ideal limiting case one 
might hope for certain special properties and simplifications which would make i t  
possible to solve them exactly at least for some of their properties. 

Once such an exact solution was at hand, the prospect would open up of being able 
to treat non-renormalisable interactions in perturbation theory using the pseudo-free 
theory as a starting point. In the absence of any ready solution, it seems worthwhile to 
exploit to the full the analogy between the (unknown and difficult) pseudo-free field 
theories and the (known and simple) pseudo-free oscillator in order to get at least some 
idea as to how an exact solution might look. 

In this paper we obtain information about the set of n-point functions for the 
pseudo-free oscillator-this being the sort of information one wants to have in a field 
theory. 

There are of course many differences between the pseudo-free oscillator and the full 
infinite-degrees-of-freedom problem. The pseudo-free osciliator is designed to cope 
with trouble caused by interactions singular at small x values, whereas the pseudo-free 
field theory has to cope with trouble at large field configurations. Again, in the field 
theory case, one expects (Klauder 1979) infinite multiplicative field renormalisations to 
play a crucial role. These have no analogue with only one degree of freedom. 

Nonetheless, there are two (related) points of close similarity (Klauder 1979): 
(i) One expects the (say scalar) pseudo-free field theory to obey the equation 

q5(O+m2)(b = o .  (2) 

x(X Jrx) = 0.  (3) 

One expects the pseudo-free oscillator to obey the analogous equation 

(This latter equation will be proved in § 2 below). 
(ii) One expects the (truncated) Green's functions of the (scalar) pseudo-free field 
theory to obey-in some sense-the coupled equations 

(here x* is spacelike separated with respect to x and set equal to x after the 
differentiation). One knows (it follows easily from (3)) that the (now not truncated) 
Green's functions of the pseudo-free oscillator satisfy the exactly analogous equations 

(Here the time-ordering instruction must be understood as treating x ( t ) x ( t * )  as a single 
object ordered according to t, and t* is set equal to t after the differentiation). 

The plan of this paper is as follows. In 5 2 we collect together some preliminary facts 
about the pseudo-free oscillator. In $ 3  we establish a new equation of motion for x. This 
equation is shown to imply (3) (it contains more information than (3)). In 5 4 our new 
equation of motion is exploited to obtain information about the n-point functions. In 
8 5 we speculate on the possible relevance of our results to the field-theory case. Finally, 
we sketch-in the Appendix-an alternative more 'physical' derivation of our new 
equation of motion. 
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2. Preliminaries 

Firstly, we recall that some caution is necessary when working with quantum mechanics 
on the half-line. The usual ‘heuristic’ approach can sometimes mislead. For example, 
the momentum operator 

p = -ia/ax (6) 
(defined say on C: (0 ,  CO)) has no self-adjoint extensions (on L2(0, CO)) and in 
consequence does not generate a one-parameter family of unitary operators. Another 
example of ‘counter-heuristic’ behaviour is given in § 3. 

The Hamiltonian operator (1) however is perfectly well defined ( H  on C: (0, CO) has 
several self-adjoint extensions but there is precisely one which corresponds to vanishing 
boundary conditions at 0 (Reed and Simon 1975)). 

In fact, a complete set of normalised eigenfunctions is readily found simply by 
picking out the odd eigenfunctions for the usual harmonic oscillator (i.e. on the full line) 
(see e.g Messiah 1968) and normalising to the half-line. 

Thus  we have 

HW, = (2a +;I*, 

w ~ ( x )  = 21/2[7r1’222a+1(2a + I)!] H ~ ~ + ~ ( x )  exp(-x2/2). (8) 

a -0 ,  1, 2 , .  . . (7) 
where 

( H n ( z )  are the usual Hermite polynomials.) 
We shall denote the ground state (Y0(x) = ~ T - - ’ / ~ x  exp(-x2/2)) by n-it cor- 

responds to the first excited state of the usual harmonic oscillator. 
In the sequel, we shali also require the Feynman propagator 

~ ( x l ,  t l ;  x2, t 2 )  = (xl/exp[-iH(tl- t2)IIxd 

K(x l ,  t l ;  x2, t 2 ) =  G(xl, t l ;  x2, t2)-G(xl,  t l ;  -x2, t2) 

(9) 

which, again, is readily found (Klauder 1973) to be given by 

(10) 

where G(xl ,  t l ;  x2, t2) is the Feynman propagator for the usual harmonic oscillator 
(Feynman and Hibbs 1965) 

where t = tl - t2. 
For later convenience we note the following simple consequences of (10): 

Finally, since our main interest-pursuing the analogy with field theory-is in the 
n-point functions (nlx(tl)x(t2) . . . x(t,)jfl) we record what can be obtained by elemen- 
tary methods. For n = 1, we easily have 

(13) -1 /2  (szlx(t)lfl) = 27r . 
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For n = 2 ,  we have 
U3 

( n l x ( t , ) x ( t 2 ) l ~  = C I(i~lx(t)lPr,>I2 exp[-2ia(tl- t2)1 (14) 
a =O 

which, by elementary properties of Hermite polynomials, sums to 

(4/.rr)F(-;, -;, t ;  exp[-2i(tl - f2)]) 

where F is the hypergeometric function. In terms of elementary functions, this is 

4 exp[-i(tl - t 2 ]  exp[i(tl - t2) ]  3 ) sin-'(exp[-i(tl - t2)l)  +--(I - exp[-2i(tl - t 2 ) 3 1 / 2 ] .  4 + -i( 7T 2 4 

Beyond n = 2, it no longer appears practical to continue in this way and we are 
encouraged to look for another method. 

3. Equation of motion 

If we were to suspend for a moment our caution about working on the half-line, we 
might expect x ( t )  to satisfy the equation of motion 

X ( t ) + x ( t ) = O .  (16) 

Equation (16) would appear to follow on writing 

H = p 2 / 2  + x 2 / 2  (17) 

and using the usual CCR'S [ x ,  p ]  = i and Hamiltonian equations ,f = i[H, x ] ,  p = i[H, p ] .  
However equation (16) is false. For instance, it would imply (f+(t)lCL)= 0 in 

contradiction with equation (13). 
In order to obtain the correct equation of motion, we must be a little more careful 

about domain questions. 
Choose the domain D consistirig of smooth square-integrablc functions vanishing at 

0. (D has the virtue of containing all the energy eigenstates.) 
Then, working in the Schrodinger picture, with 

, av 
2 + -  * = 1 -  

(-2c x 2 )  2 a t  

It is the last term here-which arises as a boundary term at 0--which was missing in our 
earlier 'incautious' discussion. We can take it into account by defining the 'operator' 
(actually quadratic form (Reed and Simon 1972)): 

(PIA/@> = $**'(O)@'(O) @, q € D  (21) 
whereupon we have the corrected equation of motion (transforming back to the 
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Heisenberg picture) 

i ( t ) + x ( t )  = A ( t )  

where A( t )  = exp(iHt)A exp(-iHt). ((Equation 22) is to be interpreted as 

(d2/dt2 + l)(Ylx(r)!@) = (qIr/A(t)lCP) VY,  CP E D.) 

We sketch an alternative, more 'physical' derivation of equation (22) in the Appendix. 
Klauder's conjectured equation 

x(X +x) = 0 (3) 

is then immediately seen to hold in the sense that 

(d2/dt2+ l)(Vlx(f*)x(f)lCP) = 0 V @ , V E D  (23) 

where t" is set equal to t. after the differentiation. 
Finally, it is interesting to compare the above with the classical situation. Classic- 

ally, a harmonic oscillator which is constrained to 'bounce' at the origin will have 
solutions (Klauder 1979) 

x = Alcos(t +B)I. (24) 

Clearly, these obey equation (3). If one seeks an equation like (22) one readily obtains 
(in some formal sense) 

x +x = 2 p 2 S ( x )  (25) 

where p = 1. (It does not seem possible to establish any exact correspondence between 
equations (22) and (25) although it is tempting to try to write A as something like 
$ p S ( x ) p . )  Equations like (25) have previously been considered by Castell (1978). 

4. Information about n -point functions 

One can exploit equation (22) to obtain information about the it-point functions. In a 
basis that diagonalises x ( t ) ,  we have, from (21), 

(x rlA(tjlx't) = ; S ' ( x ) S ' ( x ' )  (26) 

(where S ' ( x )  is interpreted (unconventionally) as yielding jFf(x)S'(x) dx = - f ' ( O )  for f 
with f(0) = 0). This combines neatly with the results (12) on the Feynman propagator 
given in 8 1 to allow the following calculation: 
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where 

p ( t j  = exp(-it) sin t = (1 -exp(-2itj)/2. 

With a little more work, one  may eliminate alternate factors of (d2/d t?  t 1) in the 
above: 

( [ n ]  is n when n even, n - 1 when n odd) 

Taking the n even case: 

= dxl  J J  dx2 dx; dx3 J J  dx4 dxk . . 
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= /  dxl dx3 [ dxs . . . / d ~ , - ~ ( e x p ( 3 i t ~ / 2 ) 2 . r r - " ~ x ~  exp(-x:/2)) 

3 x3 (:) (k) I d X 3  [i sin (t2 - f3)l3j2[i sin (f3 - t4)]3/2 

+ 2 cos ( f2  - f 3 )  cos (t3 - f 4 ) ) ]  

x ex'[-? (i sin (t2 - t 3 )  i sin (r3 - t4) 

etc / dxs etc , . , (exp( - 3 i t , / 2 )2~- ' /~ ) ,  

On using 5," dx x3 exp(-ax2) = (1/2a2) this yields 

where p is defined after equation (27). 
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Similarly, for odd n ( n  > 2) we obtain 

As for the (undifferentiated) n -point functions themselves, the two- and three-point 
functions may be deduced from (28) by integrating up with the retarded Green function 
for d2/dt2 + 1, thus for instance 

sin ( t  - t’)  
exp[--E(t - t ’ ) ]  exp(-it’/2)[i sin t‘]1’2 dt’ (29) 

4 J Z  
(nlx(t)x(o)jn) = - lim 

IT 6-0 -cc 2 

which (after a short calculation) checks with equation (15). However, for a > 3  such 
Green function methods fail because of the singular denominator in equation (28) and 
we have not succeeded in finding a nice general formula for the n-point function itself. 
The form of the two-point function of equation (15) is complicated enough to suggest 
that such a general formula would be of dubious value anyway! 

5. Discussion 

Our hope is that the methods and results described above will act as a source of 
conjectures about the solution to pseudo-free field theories. 

Equations (4) and ( 5 )  suggest that there should be a close analogy between the 
n -point functions of the pseudo-free oscillator and the truncated n -point functions of 
the field theory (that is, the generating functional for the oscillator should be like the 
logarithm of the generating f mctional for the field theory-this difference can be traced 
back (Klauder 1979) to the need for infinite multiplicative renormalisations in the field 
theory case). 

The lesson of Q 3 is that the n-point functions themselves are not so nice, but the 
result of n -fold action of the free equation (27) is nice. 

In other words, we conjecture that 

(Oi+m2)(U2+m2).  . . ( U n + m 2 ) ( 0 1 4 ( ~ ~ ) 4 ( ~ z ) .  . . +(xn)IQ) 

may be calculable in analogy with the results in this paper. 
It is intriguing to note that (apart from time ordering, which can presumably be dealt 

with by ‘Euclideanising’) this is exactly what one needs (e.g. Bjorken and Drell 1965) 
(the so-called ‘on-mass-shell amputated Green’s function’) to calculate the S matrix! 

Finally, we should not lose sight of the fact that the pseudo-free oscillator--and its 
use as a starting point for singular perturbations in quantum mechanics-is not without 
interest in its own right (Klauder 1973, Ezawa et a1 1975). 
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Appendix 

We present an alternative heuristic understanding of equation ( 2 2 ) .  We regard our 
(half-line) problem as a limiting case of a quantum mechanical problem on the (full) 
line. Take the Hamiltonian 

H = p 2 / 2  + x 2 / 2  + h O ( - x )  (AI)  
where 0 is the step function. (The potential V ( x )  = x 2 / 2  + h 0 ( - x )  is sketched in figure 
1.) Our problem is recovered in the limit h +CO (infinite step). Since we are working on 
the full-line we can safely assume the expected equations of motion will hold. Thus we 
shall have 

x + x  = h 6 ( x ) .  (A21 

Figure 1. The potential and a typical energy eigenstate for the finite-barrier approximation. 

We shall ‘sandwich’ ( A 2 )  between two eigenstates 9:, 9:. The superscript h reminds 
us that these states depend on the height of the step. When the step is large but finite, we 
expect the eigenstates to look broadly like those for the limiting (h  +CO) system, except 
for an exponential tail on the left (see figure 1). Thus 

( A 2 )  +(9:/i + x l V k )  = C:”Ch,h ( A 3 )  

where C: is the height of the exponential tail (= 9:(0)).  Now (see figure 1) although the 
value of Yr: at zero is not the same as that of the limiting case, one does feel safe (see 
figure 1) in approximating the gradient V!’(O) by that of the limiting case. 

If we accept this, then, applying the usual ‘matching’ conditions of the wavefunction 
and its gradient at 0, and assuming h >>E,,, E,,,, we easily find C: = Y r : t ( 0 ) / ( 2 h ) 1 ’ 2 .  
Putting this in ( A 3 )  and taking the limit h +CO,’ we obtain 

(9,$ + x / 9 , ) . =  ;w:’(o)WL(o). (‘44) 

Applying the usual ‘since it is true in a basis, it is true everywhere’ argument, we recover 

i + x = A .  ( 2 2 )  

(Since this was proved rigorously in $ 2 ,  we now feel happy about the assumptions made 
in the above argument-it can presumably be made rigorous too.) 

The following insight has been gained about the origin of equation ( 2 2 ) :  It is as if our 
infinite-barrier system ‘remembers’ the tunnelling there would have been if the barrier 
were made finite. 
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